Geometry N	lotes
------------	-------

Name_ Key

1.4 Measure and Classify Angles

Ray: has ____ endpoint and _extends __ infinitely in ___ direction.

Always label with the endpoint ____ first!!!

Opposite Rays are collinear and have the same endpoint _____ * they form a line _____ ; ___ ; ___ ;

Angle: a figure formed by 2 noncollinear rays with a common endpoint.

Sides the 2 rays ED EF

Vertex the common endpoint E

Labeled 3 ways:

- a) 3 letters (vertex is always in the <u>middle</u>) ΔDEF or ΔFED
- b) 1 letter (only if no other angles have the same vertex & E
- c) 1 number 42

 $\angle CFD$ and $\angle \underline{DFC}$ are the same angle.

Can you say $\angle BFA$ is the same as $\angle F$? No \rightarrow other ds with $\stackrel{B}{\longrightarrow}$ Vertex $\stackrel{B}{\leftarrow}$

Can you say $\angle BFA$ is the same as $\angle 1$? $\bigcup A$

Measurement

- Angles are measured in units called degrees
- Use a protractor to measure angles- place the center point of the protractor over the vertex; align the mark labeled 0 on the protractor with one side of the angle.
- Measure of $\angle ABC$ is abbreviated as m before an angle name, like m $\angle ABC = 72^{\circ}$

Angle Classification

• Acute: if measure is greater than 0° but less than 90°

• Right: if the measure is 90°.

• Obtuse: if the measure is greater than 90° but less than 180°

• Straight: if the measure is 180°

Measure each angle and classify according to the measure:

More Vocabulary:

Congruent Angles have the same Measure

According to the picture, fill in the blanks:

$$\angle 1 \stackrel{\frown}{=} \angle 2$$
 or $m \angle 1 = m \angle 2$

$$\Delta 1 + \Delta 2 + \Delta 3 = 180^{\circ}$$
 $140 + \Delta 3 = 180$
 $140 + \Delta 3 = 180$
 $\Delta 3 = 40^{\circ}$

Angle Bisector

- a ray that divides an angle into $Q \cong \Delta S$
- If BD bisects $\angle ABC$ then $\angle ABD = \angle DBC$ and m $\angle ABD = m\angle DBC$

Angle Addition Postulate

• If R is in the interior of $\angle PQS$ then $\angle PQR + \angle RQS = \underline{\angle PQS}$

1. BD bisects $\angle ABC$. Find $m\angle ABC$.

2. Given $mADC = 135^{\circ}$, find $m \angle BDA$.

