| Geometry N | lotes | |------------|-------| |------------|-------| ## Name_ Key ## 1.4 Measure and Classify Angles Ray: has ____ endpoint and _extends __ infinitely in ___ direction. Always label with the endpoint ____ first!!! Opposite Rays are collinear and have the same endpoint _____ * they form a line _____ ; ___ ; ___ ; Angle: a figure formed by 2 noncollinear rays with a common endpoint. Sides the 2 rays ED EF Vertex the common endpoint E Labeled 3 ways: - a) 3 letters (vertex is always in the <u>middle</u>) ΔDEF or ΔFED - b) 1 letter (only if no other angles have the same vertex & E - c) 1 number 42 $\angle CFD$ and $\angle \underline{DFC}$ are the same angle. Can you say $\angle BFA$ is the same as $\angle F$? No \rightarrow other ds with $\stackrel{B}{\longrightarrow}$ Vertex $\stackrel{B}{\leftarrow}$ Can you say $\angle BFA$ is the same as $\angle 1$? $\bigcup A$ ## Measurement - Angles are measured in units called degrees - Use a protractor to measure angles- place the center point of the protractor over the vertex; align the mark labeled 0 on the protractor with one side of the angle. - Measure of $\angle ABC$ is abbreviated as m before an angle name, like m $\angle ABC = 72^{\circ}$ Angle Classification • Acute: if measure is greater than 0° but less than 90° • Right: if the measure is 90°. • Obtuse: if the measure is greater than 90° but less than 180° • Straight: if the measure is 180° Measure each angle and classify according to the measure: More Vocabulary: Congruent Angles have the same Measure According to the picture, fill in the blanks: $$\angle 1 \stackrel{\frown}{=} \angle 2$$ or $m \angle 1 = m \angle 2$ $$\Delta 1 + \Delta 2 + \Delta 3 = 180^{\circ}$$ $140 + \Delta 3 = 180$ $140 + \Delta 3 = 180$ $\Delta 3 = 40^{\circ}$ Angle Bisector - a ray that divides an angle into $Q \cong \Delta S$ - If BD bisects $\angle ABC$ then $\angle ABD = \angle DBC$ and m $\angle ABD = m\angle DBC$ Angle Addition Postulate • If R is in the interior of $\angle PQS$ then $\angle PQR + \angle RQS = \underline{\angle PQS}$ 1. BD bisects $\angle ABC$. Find $m\angle ABC$. 2. Given $mADC = 135^{\circ}$, find $m \angle BDA$.