GOAL Find surface areas and volume of spheres.

Vocabulary

A **sphere** is the set of all points in space equidistant from a given point. This point is called the **center** of the sphere.

A radius of a sphere is a segment from the center to a point on the sphere.

A **chord** of a sphere is a segment whose endpoints are on the sphere.

A diameter of a sphere is a chord that contains the center.

Theorem 11 Surface Area of a Sphere: The surface area S of a sphere is $S = 4\pi r^2$, where r is the radius of the sphere.

Theorem 12 Volume of a Sphere: The volume *V* of a sphere is $V = \frac{4}{3}\pi r^3$, where r is the radius of the sphere.

Find the surface area of a sphere **EXAMPLE 1**

Find the surface area of the sphere.

Solution

 $S = 4\pi r^2$

Formula for surface area of a sphere

$$= 4\pi(9)^2 = 324\pi \approx 1017.88$$

Substitute 9 for *r* and simplify.

The surface area of the sphere is about 1017.88 square inches.

Standardized Test Practice **EXAMPLE 2**

The surface area of the sphere is 12.25π square centimeters. What is the diameter of the sphere?

B 1.75 cm

D 5.5 cm

$$S = 12.25\pi \text{ cm}^2$$

Solution

$$S=4\pi r^2$$

Formula for surface area of a sphere

$$12.25\pi = 4\pi r^2$$

Substitute 20.25π for S.

$$3.0625 = r^2$$

Divide each side by 4π .

$$1.75 = r$$

Find the positive square root.

The diameter of the sphere is 2r = 2(1.75) = 3.5 cm. The correct answer is C.

9 in.

Exercises for Examples 1 and 2

- 1. The diameter of a sphere is 50 feet. Find the surface area of the sphere.
- 2. The surface area of a sphere is 36π square meters. Find the radius of the sphere.

Use the circumference of a sphere **EXAMPLE 3**

In the diagram, the circumference of the outer ball is 8π feet. Find the surface area of the outer ball.

Solution

$$C = 2\pi r$$

Formula for circumference

$$8\pi = 2\pi r$$

Substitute 8π for C.

$$4 = r$$

Divide each side by 2π .

$$S = 4\pi r^2 = 4\pi (4)^2 = 64\pi \approx 201.06$$

The surface area of the outer ball is 64π , or about 201.06 square feet.

Find the volume of a sphere **EXAMPLE 4**

The bowling ball has a diameter of 8 inches. Find its volume.

Solution

$$V = \frac{4}{3}\pi r^3$$

Formula for volume of a sphere

$$V = \frac{4}{3}\pi(4)^3 = \frac{256}{3}\pi \approx 268.08$$

 $V = \frac{4}{3}\pi(4)^3 = \frac{256}{3}\pi \approx 268.08$ Substitute $\frac{8}{2}$, or 4, for r and simplify.

The volume of the bowling ball is $\frac{256}{3}\pi$, or about 268.08 cubic inches.

Exercises for Examples 3 and 4

- **3.** In Example 3, the circumference of the inner ball is 5π feet. Find the surface area of the inner ball. Round your answer to two decimal places.
- The radius of a sphere is 7 yards. Find the volume of the sphere. Round your answer to two decimal places.

Lesson 11.8 Surface Area and Volume of Spheres

Teaching Guide

- **1.** volume: about 5,276,669,286 cubic miles; surface area: about 14,657,415 square miles
- **2.** about 3963 miles **3.** about 197,359,488 square miles **4.** Earth's surface area is about 13.5 times the size of the moon's surface area.
 - **5.** about 77.2%

Practice Level A

- **1.** T **2.** Sample answer: \overline{QR}
- **3.** Sample answer: \overline{ST} **4.** \overline{PS} **5.** 14π m
- **6.** 452.39 cm^2 **7.** 4536.46 ft^2 **8.** 1520.53 in.^2
- **9.** 78.54 m^2 **10.** 706.86 yd^2 **11.** $11,309.73 \text{ cm}^2$
- **12.** hemisphere **13.** 8.5 ft **14.** 17 ft
- **15.** 453.96 ft² **16.** 9 cm **17.** 1 ft **18.** 6.4 m
- **19.** 358,908.11 m² **20.** 523.6 m³
- **21.** 11,494.04 in.³ **22.** 113.1 ft³ **23.** 381.7 cm³
- **24.** 4849.05 yd³ **25.** 91,952.32 m³ **26.** 12 yd
- **27.** 3 in. **28.** 2 mm
- **29.** $S = 12.57 \text{ m}^2$, $V = 4.19 \text{ m}^3$
- **30.** 2.5 ft **31.** 15.71 ft **32.** 65.45 ft³
- **33.** The surface area of Pluto is about $\frac{1}{30}$ of Earth's surface area.

Practice Level B

- **1.** 201.06 cm^2 **2.** 28.27 in.^2 **3.** 615.75 m^2
- **4.** B **5.** $\frac{7}{2}$ cm **6.** 7 cm **7.** 76.97 cm²
- **8.** 1901.17 m^2 **9.** 1436.76 ft^3 **10.** 381.7 yd^3
- **11.** 2144.66 m³ **12.** 2.48 in. **13.** 4.83 cm
- **14.** 3.31 m **15.** B **16.** 490.09 cm^2 ; 904.78 cm^3
- **17.** 254.47 in.²; 197.92 in.³ **18.** 566.01 ft²; 1093.27 ft³ **19.** 24π mm; 576π mm²; 2304π mm³
- **20.** 4 in.; 64π in.²; $\frac{256}{3}\pi$ in.³
- **21.** $\frac{7}{2}$ ft; 7π ft; $\frac{343}{6}\pi$ ft³
- **22.** 6 m; 12π m; 144π m² **23.** 18 cm
- **24.** 8.87 in.² **25.** 2.48 in.³ **26.** 9.04 in.³

Practice Level C

- **1.** 172.03 m² **2.** 2.01 mi² **3.** 79,422.6 mm²
- **4.** 415.48 cm^2 **5.** 226.19 in.^2 **6.** 62.83 ft^2
- **7.** 2.1 m **8.** 9.75 cm **9.** 0.6 ft **10.** 80π cm²

- **11.** 2352.07 cm³ **12.** 606.13 ft³
- **13.** 124,185.41 in.³ **14.** 10.31 m³ **15.** 21.77 mm³
- **16.** 219.42 yd³ **17.** $S = 104.72 \text{ m}^2$, $V = 77.57 \text{ m}^3$
- **18.** $S = 1009.61 \text{ ft}^2$, $V = 2322.09 \text{ ft}^3$
- **19.** $S = 6597.34 \text{ cm}^2$, $V = 38,788.74 \text{ cm}^3$
- **20.** π cm² **21.** 16π in.² **22.** 16π m²
- **23.** 58.43 ft, 1086.87 ft², 3369.28 ft³
- **24.** 13.45 m, 2273.29 m², 10,191.91 m³
- **25.** 29 yd, 182.21 yd, 102,160.4 yd³
- **26.** 11 cm, 69.12 cm, 1520.53 cm²
- **27.** $S \approx 27,646 \text{ ft}^2$, $V \approx 385,368.7 \text{ ft}^3$
- **28.** about 52 cm³

Study Guide

- **1.** 7853.98 ft^2 **2.** 3 m **3.** 78.54 ft^2
- **4.** 1436.76 yd³

Real-Life Application

- **1.** radius ≈ 31.72 ft; diameter ≈ 63.44 ft; circumference ≈ 199.30 ft **2.** about 12,643.76 ft²
- **3.** Radius is approximately 25.18 feet; about 20% reduction in radius compared to a 50% reduction in volume.

Challenge Practice

- **1.** $\frac{s}{r} = \sqrt[3]{4\pi}$ **2.** $\frac{r_c}{r_s} = \sqrt{\frac{8}{h}} = \frac{2\sqrt{2}}{\sqrt{h}}$
- **3. a.** $V = \frac{16}{3}\pi r^3$ **b.** r > 0
- c. Radius: 1.9 ft; length: 7.6 ft
 - **4.** $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$
 - **5.** $(x + 4)^2 + (y 3)^2 + (z 5)^2 = 81$
- **6.** $\left(x \frac{5}{2}\right)^2 + (y 1)^2 + z^2 = \frac{97}{4}$
- **7.** $V = \frac{4}{3}\pi abc$ **8.** $1120\pi \approx 3518.6 \text{ cm}^3$

Lesson 11.9 Explore Similar Solids

Teaching Guide

- **1.** Two polygons are similar if all corresponding angles are congruent and all corresponding side lengths are proportional.
 - **2.** Yes, because all angles are 90° and $\frac{a}{b} = \frac{a}{b} = \frac{a}{b}$.
 - 3. Check student's drawings: