\qquad

LESSON
11.5

Study Guide

For use with the lesson "Explore Solids"

GOAL Identify solids.

Vocabulary

A polyhedron is a solid that is bounded by polygons, called faces, that enclose a single region of space.

An edge of a polyhedron is a line segment formed by the intersection of two faces.

A vertex of a polyhedron is a point where three or more edges meet.
The bases of a prism are congruent polygons in parallel planes. The base of a pyramid is a polygon.

Theorem 1 Euler's Theorem: The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula $F+V=E+2$.

A polyhedron is regular if all of its faces are congruent regular polygons.

A polyhedron is convex if any two points on its surface can be connected by a segment that lies entirely inside or on the polyhedron.

A polyhedron is concave if any two points on its surface can be connected by a segment that goes on the outside of the polyhedron.

Platonic solids are five regular polyhedra that include the regular tetrahedron, cube, regular octahedron, regular dodecahedron, and regular icosahedron.
A cross section is the intersection of a plane and a solid.

EXAMPLE 1 Identify and name polyhedra

Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices, and edges.
a.

b.

c.

Solution

a. The solid is formed by polygons, so it is a polyhedron. The base is a triangle, so it is a triangular pyramid. It has 4 faces, 4 vertices, and 6 edges.
b. The sphere has a curved surface, so it is not a polyhedron.
c. The solid is formed by polygons, so it is a polyhedron. The two bases are congruent rectangles, so it is a rectangular prism. It has 6 faces, 8 vertices, and 12 edges.
\qquad

EXAMPLE2 Use Euler's Theorem with Platonic solids

Find the number of faces, vertices, and edges of the polyhedron. Check your answer using Euler's Theorem.

Solution

By counting on the diagram, the tetrahedron has 5 faces, 5 vertices, and 8 edges. Use Euler's Theorem to check.

$F+V=E+2 \quad$ Euler's Theorem
$5+5=8+2 \quad$ Substitute.
$10=10 \quad$ This is a true statement. So, the solution checks.

EXAMPLES Describe cross sections

Describe the shape formed by the intersection of the plane and the solid.
a.

b.

Solution

a. The cross section is a circle.
b. The cross section is a pentagon.

Exercises for Examples 1, 2, and 3

Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices, and edges.
1.

2.

3.

4. Find the number of faces, vertices, and edges of the polyhedron. Check your answer using Euler's Theorem.

Describe the shape formed by the intersection of the plane and solid.
5.

6.

7.

Lesson 11.5 Explore Solids, continued

Practice Level B

1. yes; rectangular prism 2. no; The surfaces are not polygons. 3. no; The surfaces are not polygons.
2. 4
3. 16
4. 36

5.

10. $5,5,8$
11. $6,8,12$
12. $5,6,9$ 13. $7,7,12$
14. $8,12,18$
15. $7,10,15$
16. octagon
17. concave
18. convex
19. concave
20. pentagon
21. ellipse
22. rectangle 23. B
24. rectangular prism and rectangular pyramid;
9 faces
25. equilateral
26. $\sqrt{2}$
27. 24

Practice Level C

1. yes; heptagonal pyramid 2. no; Solid has a curved surface.
2. yes; nonagonal prism
3. 6
4. 36 6. 54

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

8.

9.

10. 6 faces, 8 vertices, 12 edges 11. 10 faces, 16 vertices, 24 edges 12.9 faces, 14 vertices, 21 edges 13. 12 faces, 20 vertices, 30 edges
14. 12 faces, 20 vertices, 30 edges
15. 15 faces, 26 vertices, 39 edges
16. concave
17. concave
18. concave
19. rectangle
20. ellipse
21. triangle
22. true
23. true
24. false
25. false
26. a. Sample answer:
b. Sample answer:

c. Sample answer:

Study Guide

1. Yes; Pentagonal pyramid; 6 faces, 6 vertices, 10 edges 2. Not a polyhedron 3. Yes; Triangular prism; 5 faces, 6 vertices, 9 edges
2. 8 faces, 6 vertices, 12 edges; $F+V=E+2$, $8+6=12+2$, so $14=145$. The cross section is a circle. 6. The cross section is a square.
3. The cross section is a hexagon.

Interdisciplinary Application

1. No; a rhombus is not a regular polygon; all sides are congruent in a rhombus, but not all angles.
2. 24 3. No; unless the triangles are equilateral triangles, it cannot be a regular polyhedron.
3. 26
4. octagon

Challenge Practice

1. Faces: 4 triangles, 4 hexagons; vertices: 12; edges: 18 2. Faces: 8 triangles, 6 squares; vertices: 12; edges: 24 3. Faces: 8 triangles, 6 octagons; vertices: 24 ; edges: 36
2. Faces: 6 squares, 8 hexagons; vertices: 24 ; edges: 36 5. A rhombicuboctahedron has 26 faces and 24 vertices and a truncated cuboctahedron has 26 faces and 48 vertices.
3. An icosidodecahedron has 60 edges and 30 vertices and a truncated dodecahedron has 90 edges and 60 vertices.

Lesson 11.6 Volume of Prisms and Cylinders

Teaching Guide

1. square prism and a cylinder 2. square prism: 12 ft by 12 ft by 5 ft ; cylinder: 6 ft and a height 5 ft 3. square prism: $720 \mathrm{ft}^{3}$; cylinder: about $565.5 \mathrm{ft}^{3}$
2. about $1285.5 \mathrm{ft}^{3}$
3. about 9615.44 gallons
