Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved

11.2

Date _

Study Guide

For use with the lesson "Areas of Circles and Sectors"

GOAL Find the areas of circles and sectors.

Vocabulary

A sector of a circle is the region bounded by two radii of the circle and their intercepted arc.

Theorem 9 Area of a circle: The area of a circle is π times the square of the radius.

Theorem 10 Area of a sector: The ratio of the area of a sector of a circle to the area of the whole circle (πr^2) is equal to the ratio of the measure of the intercepted arc to 360° .

EXAMPLE 1 Use the formula for area of a circle

Find the indicated measure.

Solution

a.	$A = \pi r^2$	Write the formula for area of a circle.
	$201 = \pi r^2$	Substitute 201 for A.
	$\frac{201}{\pi} = r^2$	Divide each side by π .
	$^{\circ}$ ~ "	Find the negitive genera negt of each gid

 $8 \approx r$ Find the positive square root of each side.

The radius of the circle is about 8 feet.

b.	$A = \pi r^2$	Write the formula for area of a circle.
	$= \pi \cdot (5.2)^2$	Substitute 5.2 for <i>r</i> .
	$= 27.04\pi$	Simplify.
	≈ 84.9	Use a calculator.

The area of the circle is about 84.9 square inches.

Exercises for Example 1

Find the indicated measure.

- **1.** The diameter of the circle is 11 centimeters. Find the area.
- 2. The area of the circle is 158.3 square yards. Find the radius.
- **3.** The area of the circle is 1024π square meters. Find the diameter.

Name

LESSON 11.2

Study Guide continued

For use with the lesson "Areas of Circles and Sectors"

EXAMPLE2 Find the areas of sectors

Find the areas of the sectors formed by $\angle PQR$. Solution

STEP 1 Find the measures of the minor and major arcs.

Because $m \angle PQR = 160^\circ$, $\widehat{mPR} = 160^\circ$ and $\widehat{mPSR} = 360^\circ - 160^\circ = 200^\circ$.

STEP 2 Find the areas of the small and large sectors.

Area of small sector $=\frac{160^{\circ}}{360^{\circ}} \cdot \pi \cdot 10^2 \approx 139.63$ Area of large sector $=\frac{200^{\circ}}{360^{\circ}} \cdot \pi \cdot 10^2 \approx 174.53$

So, the areas of the small and large sectors are about 139.63 square inches and 174.53 square inches, respectively.

EXAMPLE3 Use the Area of a Sector Theorem

Use the diagram to find the area of $\odot Y$. Solution Area of sector $XYZ = \frac{mXZ}{360^\circ} \cdot \text{Area of } \odot Y$ $95 = \frac{150^\circ}{360^\circ} \cdot \text{Area of } \odot Y$ $228 = \text{Area of } \odot Y$

The area of $\bigcirc Y$ is 228 square centimeters.

Exercises for Examples 2 and 3

4. Find the areas of the sectors formed by $\angle ABC$.

х

•150°

 $A = 95 \text{ cm}^2$

Lesson 11.2 Areas of Circles and Sectors, continued

2. Sample answer: If the radius of $\odot A$ is *r*, the circumference of $\odot A$ is $2\pi r$. The radius of each of the smaller circles is $\frac{1}{2}$ of the length of the radius of $\odot A$. So, the circumference of each smaller circle is $2\pi \left(\frac{1}{2}r\right)$ or πr . When the circumference of $\odot D$ is added to the circumference of $\odot E$, the result is $2\pi r$, which equals the circumference of $\odot A$.

Practice Level A

1. 4π in.²; 12.57 in.² **2.** 64π ft²; 201.06 ft²

3. $\frac{\pi}{4}$ yd²; 0.79 yd² **4.** about 4.30 in.

5. about 3.43 m **6.** about 11.62 cm

7. about 17.81 ft
8. about 28.27 cm²⁰; about 84.82 cm²
9. about 52.36 in.²; about 261.08 in.²
10. about 603.19 ft²; about 1206.37 ft²
11. about 62.86 m²
12. about 81.30 in.²
13. about 2.91 ft
14. about 6.29 cm
15. about 39.54 cm
16. 81°
17. about 8.90 cm
18. about 21.49 cm
19. about 43.23 cm
20. about 37.7 in.²
21. about 21.46 cm²
22. about 73.06 ft²
23. about 706.86 in.²
24. about 25.13 in.²
25. 24 in.; about 113.10 in.²

Practice Level B

1. $36\pi \text{ in.}^2$; 113.10 in.² **2.** $110.25\pi \text{ ft}^2$; 346.36 ft² **3.** $153.76\pi \text{ cm}^2$; 483.05 cm² **4.** 7.42 in. **5.** 9.61 m **6.** 28.86 cm **7.** 25.93 ft **8.** 9.08 in.² and 41.19 in.² **9.** 827.02 cm² and 1463.20 cm² **10.** 426.94 m² and 590.93 m² **11.** 107.055 ft² **12.** 6.89 in. **13.** 6.83 m **14.** 9.70 in. **15.** 60.94 in. **16.** 67° **17.** 11.34 in. **18.** 30.74 in. **19.** 69.00 in. **20.** 86.08 cm² **21.** 199.10 in.² **22.** 236.40 m² **23.** 37.70 ft² **24.** 19.27 in.² **25.** 117.92 cm² **26.** 1385.44 ft² **27. a.** 301.59 ft² **b.** 117.81 ft² **28.** 10.60 m²

Practice Level C

1. $\frac{9\pi}{64}$ in.²; 0.44 in.² **2.** 13.69 π cm²; 43.01 cm² **3.** $\frac{529\pi}{16}$ in.²; 103.87 in.² **4.** about 8.67 in. **5.** about 11.14 m **6.** about 33.03 cm **7.** about 30.15 ft **8.** about 33.51 in.²; about 167.55 in.² **9.** about 21.21 in.²; about 42.41 in.² **10.** about 157.28 mm²; about 357.44 mm² **11.** about 43.0 cm² **12.** about 6.96 m **13.** about 11.50 ft **14.** about 14.13 m **15.** about 88.58 m **16.** about 37° **17.** about 9.110 m **18.** about 37.31 m **19.** about 107.68 m **20.** about 31.42 m² **21.** about 31.32 m² **22.** about 70.69 in.² **23.** about 110.01 in.² **24.** about 219.75 cm² **25.** about 12.57 cm² **26.** c. 16-inch pizza **27.** They all waste the same amount of paper.

Study Guide

1. $A \approx 95 \text{ cm}^2$ **2.** $r \approx 7.1 \text{ yd}$ **3.** d = 64 m**4.** 423.33 m² and 962.11 m² **5.** 634.89 m²

Interdisciplinary Application

- **1.** about 52,360 mi²
- **2.** about 17,671.5 mi² **3.** about 5655 mi²

Challenge Practice

1.
$$\frac{50\pi}{3} - 25\sqrt{3} \approx 9.1 \text{ cm}^2$$

2.
$$\frac{81\pi}{2} - 81\sqrt{2} \approx 12.7 \text{ in.}^2$$
 3. 20.2 ft²

4.
$$36\sqrt{3} - 18\pi \approx 5.8 \text{ cm}^2$$

5.
$$1369\pi \approx 4300.8 \text{ in.}^2$$

30° 60° 90° 120° 150° 180° X 9π 9π_ 15π 3π 3π 3π y 2 4 4 4 2

