Geometry Notes

Name

10.5 Apply Other Angle Relationships in Circles

Recall

You know that the measure of a central angle You know that the measure of an inscribed angle is

equal to its intercepted arc. of its intercepted arc.

ANGLES ON THE CIRCLE THEOREM

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is one half the measure of its intercepted arc.

∠1 intercepts arc _AB

∠2 intercepts arc <u>ACB</u>

 $m \angle 1 = 66$ 1.

$$\Delta 1 = \frac{1}{2} \widehat{AB}$$

$$\Delta 1 = \frac{1}{2} (132^{\circ})$$

mAB = 120°

ANGLES INSIDE THE CIRCLE THEOREM

If two chords intersect inside a circle, then the measure of each angle is one half the sum of the measures of the arcs intercepted by the angle and its vertical angle.

∠1 intercepts arcs <u>DC</u> and

 $m \angle 1 = \frac{1}{2} (m D + m AB)$

∠2 intercepts arcs BC and AD

x = 126

$$X = \frac{1}{2}(112 + 140)$$

$$X = \frac{1}{2} (252)$$

132°

112°

 $38 = \frac{1}{2} (10x-1+x)$

 $38 = \frac{1}{2} (11x-1)$

76= 11x-1

1=X

77 = LIX

ANGLES OUTSIDE THE CIRCLE THEOREM

If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs.

Tangent & Secant:

Two Tangents:

Two Secants:

∠1 intercepts arcs AC & BC

 $\angle 2$ intercepts arcs $\underline{PQR+PR}$ $\angle 3$ intercepts arcs $\underline{XY+WZ}$

$$45 = \frac{1}{2}(360 - X - X)$$

$$-270 = -2 \times 135 = \times$$

$$6. x = 49$$

$$X = \frac{1}{2}(170 - 72)$$

$$52 = y - 30$$

Challenge Problems:

8. Find x and y.
$$27 = \frac{1}{2}(136-x)$$

$$y = \frac{1}{2}(82)$$

$$\Delta 1 = \frac{1}{2}(124)$$
 $\Delta 1 = 62$
 $62 = \frac{1}{2}(167 - x)$

