10.3 Apply Properties of Chords

Recall: \quad A chord is a segment with endpoints on a circle. \quad Any chord divides the circle into two arcs.	
In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. \qquad \qquad if and only if \qquad \cong \qquad	
If one chord is a perpendicular bisector of another chord, then the first chord is a diameter. If $Q S$ is a perpendicular bisector of $\overline{T R}$, then	
If a diameter of a circle is perpendicular to a chord, then it bisects the chord and its arc. If $\overline{E G}$ is the diameter and $\overline{E G} \perp \overline{D F}$, then \qquad \cong \qquad and \qquad \cong \qquad	
In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center. \qquad \qquad if and only if \qquad \cong \qquad	

Find the length of the given chord.

1. $A B=$

2. $S Q=$

Is $\overline{P R}$ a diameter of the circle? Explain.

Find the missing arc measures.

6. $\mathrm{m} \overparen{A C}$

7. $\mathrm{m} \overparen{H K}$

Find the value of x.
8.

9.

10.

11. Suppose the radius of a circle is 17 inches and a chord is 30 inches. Find the distance from the center of the circle to the chord. Draw a picture to help!

